
Basic Elements of FORTRAN

 FORTRAN is one of the computer languages commonly used by scientists and

engineers for technical calculations. These technical calculations are too difficult or take

too long to be performed by hand.

 FORTRAN has its own special alphabet. The special alphabet used with the

FORTRAN 90/95 language is known as the FORTRAN character set. It consists of 86

symbols shown below.

 FORTRAN 90/95 character set

26 Uppercase letters of the alphabet: A through Z

26 Lowercase letters of the alphabet: a through z

10 Digits: 0 through 9

1 Underscore character: _

5 Arithmetic symbols: + − * / **

 18 Miscellaneous symbols: () . = , ‘ $: ! “ % & ; < > ? $

 FORTRAN is case insensitive. (For example, the uppercase letter A is equivalent

to the lowercase letter a.) This behavior is in contrast with such case sensitive languages

as C in which A and a are two totally different things.

 A FORTRAN program consists of a series of statements designed to accomplish

the goal of the programmer. The two basic types of statements are executable statements

and nonexecutable statements. Executable statements describe the actions a program

takes when it is executed. (e.g. additions, subtractions, multiplications, divisions).

Nonexecutable statements provide information necessary for the proper operation of the

program. FORTRAN 90/95 is a free-source form, where FORTRAN statements may be

entered anywhere on a line, and each line may be up to 132 characters long. A too long

statement can be continued on the next line by ending the current line (and optionally

starting the next line) with an ampersand (&) character. A statement can continue over 40

lines. A statement label is a number between 1 and 99999. It is the “name” of the

FORTRAN statement and may be used to refer to a statement from other parts of the

program. It is not a line number, and it tells nothing about the order in which the

statements are executed. Statement labels are optional, and most Fortran 90/95 statements

will not have one. If a statement label is used, it must be unique within a given program

unit. Any characters following a exclamation point are comments and are ignored by the

FORTRAN compiler. Comments may appear on the same line as an executable

statement. They are very important because they help us to document the proper

operation of the program.

Constants and Variables

 A FORTRAN constant is a data object that is defined before a program is

executed and that does not change value during the execution of the program. When

FORTRAN compiler encounters a constant, it places constant value in a known location

in memory and then references that memory location whenever the constant is used in the

program. A FORTRAN Variable is a data object that can change value during the

execution of a program. When a FORTRAN compiler encounters a variable, it reserves a

known location in memory for the variable and then references that memory location

whenever the variable is used in the program. FORTRAN names may be up to 31

characters long and may contain any combination of alphabetic characters, digits, and the

underscore (_) character. First character in a name must be always an alphabetic.

Examples of valid variable names: time distance z123456789 I_want_to_go_home

Examples of invalid variable names:

 This_is_a_very_long_variable_name (Name is too long)

 3_days (First character is a number)

 A$ ($ is a illegal character)

 my-help (- is a illegal character)

Use meaningful variable names whenever possible.

 There are five intrinsic or built-in types of FORTRAN constants and variables.

Three of them are numeric (types INTEGER, REAL, and COMPLEX), one is logical

(type LOGICAL), and one consists of string of characters (type CHARACTER).

Integer Constants and Variables

 An integer constant is any number that does not contain a decimal point. It can be

positive, negative or zero. A positive constant may be written either with or without a

plus sign. No commas may be embedded within an integer constant.

Examples of valid integer constants: 0 -999 123456789 +17

Examples of invalid integer constants:

 1,000,000 (Embedded commas are illegal)

 -100. (If it has a decimal point, it is not an integer constant)

 An integer variable is a variable containing a value of the integer data type.

Real Constants and Variables

 A real constant is any number with a decimal point. It can be positive, negative or

zero and can be written with or without an exponent. A positive constant may be written

with or without a plus sign.

Examples of valid real constants: 10. -999.9 1.0E-3 0.12E+1 123.45E20

Examples of not valid real constants:

 1,000,000. (Embedded commas are illegal)

 111E3 (A decimal point is required in the mantissa)

 -12.0E1.5 (Decimal points are not allowed in exponents)

 A real variable is a variable containing a value of the real data type.

Character Constants and Variables

 A character constant is a string of characters enclosed in single (‘) or double (“)

quotes.

Examples of valid character constants:

 ‘This is a test !’

 “This is a test !”

 ‘ ’ (A single blank)

 ‘{^}’ (Legal in character context)

 ‘3.141593’ (A character string, not a number)

Examples of not valid character constants:

 This is a test ! (No single or double quotes.)

 ‘This is a test !” (Mismatched quotes.)

Logical Constants and Variables

 A logical constant is a constant that can take on one of two possible values:

.TRUE. or .FALSE.

Valid logical constants:

 .TRUE.

 .FALSE.

Not valid logical constants:

 TRUE (No periods – this is a variable name)

 .FALSE (Unbalanced periods)

Default and Explicit Variable Typing

 Two possible ways in which the type of a variable can be defined: default typing

and explicit typing. If the type of a variable is not explicitly specified in the program,

then default typing is used.

Default: Any variable names beginning with the letters I,J,K,L,M or N are assumed to

be a type INTEGER. Any variable names starting with another letter are assumed to be

type REAL.

Explicit: INTEGER :: var1, var2, var3, ….

 REAL :: var1, var2, var3, …..

 LOGICAL :: var1, var2, var3, …

 Character(len= <len>) :: var1, var2, var3, ….

Type declaration statement with a PARAMETER attribute

 Type, PARAMETER :: name = value

Example,

 REAL, PARAMETER :: pi = 3.141593

 CHARACTER, PARAMETER :: error message = ‘Unknown error !’

Keep your physical constants consistent and precise throughout a program. To improve

the consistency and understandability of your code, assign a name to all important

constants and refer to them by name in the program.

Assignment Statements

 General Form is variable_name = expression

The assignment statement calculates the value of the expression to the right of the equal

sign and assigns that value to the variable named on the left of the equal sign. The equal

sign means “store the value of expression into location variable_name.”

The standard arithmetic operators included in FORTRAN are

 + Addition

 − Subtraction

 * Multiplication

 / Division

 ** Exponentiation

The above are binary operators.

In addition, the + and − symbols can occur as unary operators. Examples +23 −a

Rules when using FORTRAN arithmetic operators:

1. No two operators may occur side by side.

2. Implied multiplication is illegal in FORTRAN. Example

x * (y + z)

3. Parenthesis may be used to group terms whenever desired.

When parenthesis are used, the expressions inside the

parenthesis are evaluated before the expression outside the

parenthesis. Example 2 ** ((8+2) / 5)

Integer Arithmetic

 Integer Arithmetic always produces a result that is an integer. Therefore, if the

division of two integers is not itself an integer, the computer automatically truncates the

fractional part of the answer.

Real Arithmetic (or floating-point arithmetic)

 Real Arithmetic always produces a result that is real. Because of the finite word

length of a computer, some real numbers cannot be represented exactly. For example, the

number 1/3 is equal to 0.33333333333…. , but since the numbers stored in the computer

have limited precision, the representation of 1/3 in the computer might be 0.3333333. As

a result of this limitation in precision, some quantities that are theoretically equal will not

be equal when evaluated by the computer. For example, on some computers

3. * (1./3.) ≠ 1. but 2. * (1./2.) = 1. Tests for equality must be performed very cautiously

when working with real numbers.

Beware of real arithmetic: Limited precision can cause two theoretically identical

expressions to give slightly different results.

Hierarchy of Operations

 Arithmetic operations in an expression are evaluated in the following order:

1. The contents of the parenthesis are evaluated first, starting from the

innermost parenthesis and working outward.

2. All exponentials are evaluated, working from right to left.

3. All multiplications and divisions are evaluated, working from left to

right.

4. All additions and subtractions are evaluated, working from left to right.

Use parenthesis as necessary to make your expressions clear and easy to understand.

Mixed-Mode Arithmetic

 An operation between an integer and a real number is called a mixed-mode

operation, and an expression containing one or more such operations is called a mixed-

mode expression. When a mixed-mode operation is encountered, FORTRAN converts the

integer into a real number and then performs the operation to get a real result. The

automatic mode conversion does not occur until a real number and an integer both appear

in the same operation. Therefore, a portion of an expression can be evaluated in integer

arithmetic, and another portion can be evaluated in real arithmetic.

Use integer exponents instead of real exponents whenever possible.

Never raise a negative number to a real power.

Assignment Statements and Logical Calculations

 Logical variable name = logical expression

The above assignment statement calculates the value of the expression to the right of the

equal sign and assigns that value to the variable named on the left of the equal sign. The

expression to the right of the equal sign contains any combination of valid logical

constants, logical variables, and logical operators.

 The two basic types of logical operators are relational operators and

combinational operators.

Relational Operator

 General form: a1 op a2

Where a1 and a2 are arithmetic expressions, variables, constants, or character strings, and

op is one of the relational logic operators as shown below

= = Equal to

/ = Not equal to

> Greater than

> = Greater than or equal to

< Less than

< = Less than or equal to

If the relationship between a1 and a2 expressed by the operator is true, then the operation

returns a value of .TRUE. ; otherwise, the operation returns a value of .FALSE.

Be careful not to confuse the equivalence relational operator (= =) with the assignment

operator.

Combinational Logic Operators

 General form: l1 .op. l2

Where l1 and l2 are logical expressions, variables, or constants and .op. is one of the

combinational operators as shown below

l1 .AND. l2 Logical AND Result is TRUE if both l1 and l2 are TRUE;

 otherwise, it is FALSE

l1 .OR. l2 Logical OR Result is TRUE if both l1 and l2 are TRUE;

 otherwise, it is FALSE

l1 .EQV. l2 Logical equivalence Result is TRUE if l1 is same as l2 (either both

 TRUE or both FALSE); otherwise, it is FALSE

l1 .NEQV. l2 Logical non-equivalence Result is TRUE if one of l1 and l2 is

 TRUE and the other one is FALSE;

 otherwise, it is FALSE

.NOT. l1 Logical NOT Result is TRUE if l1 is FALSE, and FALSE if

 l1 is TRUE

The periods are part of operator and must always be present.

Logical operators in an expression are evaluated in the following order.

1. All arithmetic operators are evaluated first in the order previously

described.

2. All relational operators (= =, / = , >, >=, <, <=) are evaluated from left

to right.

3. All .NOT. operators are evaluated.

4. All .AND. operators are evaluated from left to right.

5. All .OR. operators are evaluated from left to right.

6. All .EQV. and .NEQV. operators are evaluated from left to right.

Assignment Statements and Character Variables

 General form: character variable name = character expression

The above assignment statement calculates the value of the character expression to the

right of the equal sign and assigns that value to the variable named on the left of the equal

sign. The expression to the right of the equal sign contains any combination of valid

character constants, character variables, and character operators.

 The two basic types of logical operators are substring specifications and

concatenation.

Substring Specification

 It selects a portion of a character variable and treats that portion as if it were an

independent character variable. For example, variable str1 contains ‘123456’, then the

substring str1(2:4) would be ‘234’. Note colon in substring specification

Concatenation (//) Operator

 It combines two or more strings or substrings into a single large string. For

example str1 // str1(2:4) would result as ‘123456234’

Intrinsic Functions

 Most common functions used in scientific calculations are the trigonometric

functions, logarithms and square roots. Rarer functions are hyperbolic functions and

Bessel functions. These functions are built in directly into the FORTRAN language.

List-directed Input and Output Statements

 The input statement is of the form READ (*,*) i, j , a, chars

The parenthesis (*,*) in the statement contains control information for the read. The first

field in the parenthesis specifies the input/output unit from which the data is to be read.

An asterisk in this field means that data is read from the standard input device for the

computer (keyboard). The second field specifies the format in which the data is to be

read. An asterisk in this field means that list-directed input (free-format input) is to be

used. This means that type of the variables in the variable list determine the required

format of the input data.

 The output statement is of the form WRITE (*,*) i, j, a, chars

In above explanation replace read by write for the given output statement.

Always initialize all variables in a program before using them.

The Implicit None Statement

 When used it disables the default typing provisions of FORTRAN. When

included in program, any variable that does not appear in an explicit type declaration

statement is considered an error. It should appear after the program statement and before

any type declaration statements.

 For example,

 PROGRAM test_1

 IMPLICIT NONE

 REAL :: time

 time = 10.0

 Write (*,*) ‘Time =’ , time

 END PROGRAM

Always explicitly define every variable in your programs and use the IMPLICIT NONE

statement to help you spot and correct typographical errors before they become program

execution errors.

